DECAY OF AN ARBITRARY DISCONTINUITY
ON A CURVILINEAR SURFACE

V. M. Teshukov UDC 533.6.011+527.958

The existence of a discontinuous piecewise~analytic solution of the three-dimensional problem of the
decay of an arbitrary discontinuity concentrated on a given curvilinear hypersurface at the initial instant is
proved for a system of gasdynamics equations.

The problem of the decay of an arbitrary discontinuity on a curvilinear surface occurs in describing
the explosion of a nonspherical charge [1], the wave motion of a fluid upon destruction of a dam, etc. These
and similar problems of three-dimensional gasdynamics were studied mainly within the framework of approx-
imate models or by using numerical methods, In the planar case, one of the decay configurations of an arbij-
trary discontinuity was considered in [2] in an exact formulation, where the possibility was shown of construct-
ing the solution in the class of formal power series under definite constraints on the initial data.

1. formulation of the Problem and the Main Result

Let Iy be an analytic hypersurface in R? without reentries separating R® into the subdomains D, and D,,
At time t=0 the state of the gas is given by

u|t=o=u2(x), PIL=0=P?(X)q Sl=o=80(x), x=Di, i=42, (1.1)

where u is the gas velocity, p is the pressure, and S is the entropy. The functions uf, p}, S are analyticinthe
domains Dj, and their limit values are distinct on I'y. It is required to describe the gas motion for t> 0.
The gas is assumed inviscid, non-heat-conducting, and normal [3, 4], and its equations of state are analytic,

The analogous problem has been studied sufficiently well [3, 5] in a one-dimensional formulation. De-
pending on the initial data on both sides of the discontinuity, three fundamental configurations of the discontin~
uity occur. According to [3], the formation of a shock wave, a centered wave, and a constant discontinuity is
called configuration A, while configuration B corresponds to the formation of two shocks and a contact dig-
continuity, and configuration C to the formation of two centered waves and a contact discontinuity. Configura~
tion A contains two subcases, the motion of a shoek in Dy, a centered wave in D,, and conversely. In addition
tothesemain configurations, intermediate configurations occur which correspond to the disappearance of the
amplitude of one of the waves which hence degenerates into a weak discontinuity on the characteristics.

A piecewise-analytic solution of the three-dimensional problem of the decay of a discontinuity is con-
structed here. Definite conditions are satisfied on the surfaces of discontinuity of the solution, For weak dis-
continuities these are conditions of continuous contiguity. For shocks, they are the Hugoniot relationships

lpun — D)1 =0, [p + o(un — D)2 =0, (1.2)
le + plp + Yplun — Dp)?l = 0, lug] =0

and the condition of entropy growth. For contact discontinuities the conditions are
fu,l =0, [pl =0, {1.8)

where [ ] is the symbol of a shock, un=usn; @5 =n X u xn; n is the normal through the surface of discontinuity
by the plane t=const, Dy is the velocity of surface motion in the direction of the normal, £ is the internal en-
ergy of the gas, and p is the gas density.

One of the elements of the solution will be waves centered on the surface I'y (solutions possessing the
property that the acoustic characteristics of one of the families passing through Iy at t=0 will cover the do-
main of definition of the solution). As is shown in [6], to construct a centered wave it is sufficient to give the
condition of continuous contact along the characteristic to the known solution and the limit value on I’y of the
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normal velocity component on the second boundary characteristic. As t~0 the centered wave will behave a-
symptotically exactly as the simple Riemann wave centered on a plane tangent to I'j at this point,”

In this connection, it is clear that the form of the configuration of the decay of the discontinuity is deter-
mined locally, in the neighborhood of each point I'j, exactly as in the one-dimensional case. Let us introduce
the quantities éij, Tjj (i=1, 2, =1, 2), Aup, Ap as follows:

@y = [(p? — p2) (2 — 1 (PI)]¥2[epe A = (P§ — PD) 1y
¥y = (Gi (P?) —0:(p})) Iro, Aup = (u?m —u;) Irﬁ,b

where ¢ is a function of the variables p, S such that 80/9p=(pc)™; o (p) =0 (p, S}); c is the speed of sound,

t8=(p)™; 7i=7(p) is the equation of the Hugoniot adiabat with center at the point 7{, pj. Configuration A
occurs upon compliance with the following inequalities: ,
¥310(Ap) + ¥16(—Ap) << Aup < ©pyf(—Ap) + D10(Ap) (1.4)
(the normal n is directed into D,). Configuration B corresponds to the inequality
Aty > Dpd(—Ap) + D1,0(Ap). | (L.5)

The inequality which gives rise to configuration C when it is satisfied is
Aup < ¥50(Ap) + ¥1,08(—Ap)- (1.8)

Reaching equality in one of the inequalities (1.4)-(1.6) corresponds to the intermediate configurations (0 (x) =0,
x< 0; 0 (x)=1,x=0).

Because of the finiteness of the perturbation propagation velocity, it is sufficient to consider the case of
bounded domains D; adjoining I'y. Let the initial data in D;j satisfy the condition: The configuration of the de-
cay of the discontinuity is identical for all points of I';. Then the following theorem is valid.

THEOREM 1. A unique piecewise-analytic solution of problem (1.1) exists in the domain @ =(D; UD,) X
(0, to] (ty> 0).

The case of changes in the configuration of the decay in the discontinuity along T’y requires a separate
examination in connection with the appearance of new singularities in the solution,

2. Configuration C

In this case the initial data satisfy (1.6). The limit values of the quantity u, can be found on I'; in the do-
main outside the centered waves analogously to the one-dimensional case. By the Cauchy—Kovalevskii theorem,
analytic solutions exist for the gasdynamics equations taking on the data (1.1) in D; and D,. The centered waves
analytic for t> 0 [6] are determined by the conditions of adjacency to these solutions and the quantity u, on

I';. There remains to construct a contact discontinuity surface and a solution in the domains bounded by this
surface and the boundary characteristics of the centered waves. The analytic data on these characteristics
are such that [u,]=0 and [p] =0 on T'j. The existence of the solution of this problem is proved in [7]. The
theorem is proved in the case of configuration C and the corresponding intermediate configurations.

3. Configuration B

The inequalities (1.4) are satisfied on I';. Analytic solutions adjoining the data (1.1) are found analogous-
1y to the preceding case. It is required to find surfaces of the shocks I', I'y, the surface of the contact dis~
continuify T'; and the solution of the gasdynamics equations in the domains @, and @, bounded by these surfaces
(Fig. 1 illustrates the planar case) so that the Hugoniot relationships (1.2) are satisfied on T'y, T'y, and condi-
tions (1.3) on the contact characteristic T's.

Passage to the new independent variable reduces the problem in a domain with unknown boundaries to a
problem in a fixed domain [8]. Let I'y be given parametrically

X = Xu(ﬁ1 'Y)v lxoﬁl > 6>07 |XO'V| > 6 >01

[Xgp X Xgy| > 8>0.
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Let us consider two Cauchy problems in the domain. £:

te =1, yo = du(ys X yy)-lyg X yyl=%,
tlg= = O; = = ’ 1

Ia. 0 ¥ la=o x4(B, ) (3.1)
I =1, X; = un(xg X xy) x5 X X)L,

t]'t=0 = a, xl‘!:':o = YH=,0-

The quantity uy = u-nandn=(xgxx,)- lxg x,yl =1, the functions d,, will be defined so that at 7 =0 it will agree
with the velocity of shock motion in the direction of the normal n. The relations t=71 +o, x=%(7, @, 8, ¥)
yield the passage to new variables in the domain Q,. For T =0 these relations yield the shock surface inparam-
etric form, and for @ =const the contact characteristic passing through the shock front at the time t=« [8].
Let us introduce the vector u; =n XuXxn (u =uyn+nxuxn), The limit values of the velocity u, the pressure

p, the entropy s, the velocity of shock front motion in the normal direction dy on I'y from the domain §2,; are
determined uniquely from the relations (1.2) and (1.3) as analytic functions of the variables 8, v. Let us con-
vert the gasdynamics equations in the domain Q; to the variables 7, «, 8, v by considering r=up+p/pcy, I =
u,~p/p ey, Uy, and s the desired functions:

ra = (l—m)rg +fr, (1 +m) L = Iy + fo (3.2)

Ugy = a1Vp -+ QuVy, S = @383 + Q4Sy,

where

L= azvg + agvy + byv, 4 byvy; m = ldpy — unliC?l;
fo = azvg + agvy + byvy by, (0<<m<<1);

P 15 Cq, Upy, dpy are values of the corresponding quantities at a fixedpoint Ay (8 =8, ¥ =7} of the surface Ty, v
is the notation for a vector solution with the components r, [ , ug, s, X3, Xy, Xg3 aji=1,..., 8) bj 0=1,..., 4)
are scalar, vector-valued, matrix-valued analytic functions of the argument v. The functions bj =0 at the point
A,.

By knowing the gas parameters in front of the shock as functions of the varizibles x, t, the normal to the
front and the magnitude of r behind the front, all the gas parameters behind the front can be determined uniquely.
We obtain the following boundary conditions for 7 = 0:

llr-—-ﬂ = (ar + q (r, n, X, t))]‘rz(h uq}1:=0 =k (Il, X, t)!1:=01
Sheo = w (r, 1, X, )}imo » Dphmo = d 7y M, X, Blemo.’ (3.3)

Let us define the function dn in Q@ dp=d(r, n, x, t); in particular, dy =d(r, (yB xy.y)-in XYy {-1, v, t) »
in (3.1). The function q possesses the property that q,.=0 at the point A;. The constant ¢ is calculated by the
formula

a = (—1 + pesdun/dp(Ao) (1 + pierdus,/dp(A),

where du,/dp is the angular coefficient of the (p, uy) shock diagram (3, 4]. Consequently, duy,/dp >0, lal <1,
Extraction of the linear term in r in the first relation of (3.8) is related to the fact that the quantity a plays
an important part in the clarification of the problem solvability conditions.

Analogous transformations are performed in the domain Q,. The corresponding quantities in Q, are de-
noted by capital letters X, Y, 8, Uy, Uy, ete. The local Riemann invariants are introduced as follows: R=
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Up—P/pyey, L=Up +P/Bycy (P4, Cy are the limit values of p and ¢ from 2, at the point Ag). The transformed
equations and boundary conditions at 7 =0 have formally the same form as (3.1), (3.2) and (3.3) with the de-
sired functions in lower case replaced by upper case in the notation. The quantity A is given by the formula

A = (1 4 pgesdU o /dP(Ag))(—1 + pacadl n/dP(4,)).
Because the slope of the (P, Up) diagram is dUy/dP< 0, | A] <1. From (1,3) we obtain the boundary conditions
for a =0:
r=~hl+ KL, R = HL + ki, (3.4)
where
h = —H = (pie; — pats) (ps£1 + pac2)™";
K = 20,6,(p1c1 + pata)™h & = 2picalprer + paga)~"

By replacing the desired functions resulting from (3.3), (3.1) and (3.4), and the corresponding relationships in
Q,, we reduce the boundary conditions to homogeneous conditions, We reduce the nonlinear equations (3.1) to
quasilinear equations by continuing them to derivatives (the notation of the transformed quantities is conserved).
For o =0 the transformed Riemann invariants satisfy conditions (3.4) and the conditions

l=gar, L=AR. (3.5)
for 7=0, The problem formulated is a Goursat problem (noncharacteristic). The continued equations

Te =0 —mpry +fi, A +mily =1y + f5,
Ro=({1—MPB¢+ Fp, (1 +M)L; =Ly + Fy- (3.6)

are used in a special way to prove its dimensionality. The derivation of the continued equations is rather awk-
ward;: hence, we present the result

. N1 =1
{1 — m)" (1 — M)* {84 — kaKA) D,’,'_,-,jr =(1— M)" {1~ m)"—J [6:h 4 EK A) Lgo g;*fl + Jgo agi i, + DZ_O {(I— ar)]

+ K1+ m)' (11— m)ﬂ-i [”21 (G?F1 + AGi_Fz) + D:.u (L — AR)
: . =0
. fn—2
+(1—M)" Doyn (R —HL — kl)] (A —=M)" (1 +m) 8l — m)"[gj gify+ (1 —m)" Don(r—hi— KL)J,

(1 = m)® (1 = M)" (628 — kaKA] Diej il = (1 —M)* (1 + m)" ™7 8n (3.7)

im1 n—1
8 [12 gtfi+ 3 agify+ Dho(t—ar) + (1 —m)" Dio(r —hl— KL)]

(]

+ aK (4 m)* (1 —m)" [ 3 (G1F, + AGTF,) + Dia(L = AR)

i=j

s n—1
4+ (1 =M"D3.(R—HL - kl)] +a(d—M*(1 —m)*(1 +m)” [8:h 4+ kAK]) [ h2} gz‘fl]-

Moreover, formulas of the form (3.7) with the capital letters replaced by small and small replaced by capitals

are valid. Here
Dr_;;=0"foa™ 0% gt =(1+m)DiThs g =01 —m)'Dali,g

Gt =(+M Dizhas Gr=U—M)'Dilys
n=(fm) (—m) ™ —ah; An=(1+M)"(1 —M)™"—AH.
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The relationships (3.7) possess the property: The total order of differentiation of the unknown functions with
respect to 7 and o at the point A; in the right side is less than n. Therefore, they can be used for the succes~
sive seeking of the derivatives of the solution. The conditions for solvability of (3.7) have the form

8,0, —kaKA 40, n=1,2... (3.8)
LEMMA 1. Derivatives of the solution at the point A; are determined uniquely.

The inequalities (3.8) follows from the definition of the constants h, H, k, K and the inequalities 0 < m«< 1,
0<M<1,|al <1,]A| <1, |h] =]H| <1. The assertion is verified easily for first order derivatives.

The fact needed is established by mathematical induction on the n-total order of differentiation with
respect to 7 and o, Derivatives of order n+1 of the functions r, I, R, L. with respect to 7 and o are found in _
terms of derivatives of order n with respect to 7 and @ from (3.7) and analogous relationships in Q,. The
derivatives of the other functions are deter mined afterwards from the differentiated equations (3.1) and (3.2)
and their analogs. Because the point A is taken arbitrarily, the assertion is valid for all points I';. Having
determined the derivatives, we can construct the solution in the form of formal power series in the variables
T,0, 8B4 Y™V

Majorants of the series will be constructed in the form of functions of the variable n = (v + a) + § —
Bo+v— 7 (& >11is a constant) in order to prove the convergence. The equations for the ma]orants im, ’
Lms Tyys Bms Spm» Sy ete. oceur upon replacing the coefficients of the quasilinear system by their majorizing
functions. The property that certain coefficients of the system vanish at the point A; is retained here. The
dependence of the coefficients on 7, o, 8, v is majorized by a dependence onn . Let us examine the case
when a # 0, A# 0 (e.g., the quantities g and A can possibly vanish in a polytropic gas with adiabatic index »:
5/3=w%=2), Let us demand that the majorants satsify the relationships

lm = lalrnn Lm = IA lRm: Rm = lHiLm +k0lm7 'm :lhllm + KLmv (3.9)
where A
= |gd 7K1 — lah{)(1 — [4H]).

The latter relationship assures the existence of a nontrivial solution of the linear homogeneous equations (3.9).
We seek the solution of the majorant equations in the form of functions of the variable 7. The majorant equa~
tions corresponding to (3.6) have the form

Er';n = m—lfnm gl;n == m—lfzm, ER;n == J[_lqu ELo,n = M—lem- {3.10)
Because of (3.9) the right sides of (3.10) are connected by the relations
fam = lalfims Fim = Mmklal(1 — [AH ) 1m, Fom = |4|F1m. (3.11)

The initial conditions for all the majorants is that they vanish at the point A;. Then (3.9} follows from (3.10)
and (3.11). The majorant £y, is selected so that (> is the majorizing relation)

fim > Kify, fim > ,a‘_lKIfZa
fim > mE (1 — |AH|)(Mko|a])-1F,y, (8.12)
fim>m (1 — | AH |) Ky (Mky | aA )™ F, (K, = max (1, kk71)).

For instance, it is sufficient to take the sum of the majorants fi and Fj {i=1, 2) with a sufficiently large numer-
ical coefficient as f;,,. The system of ordinary equations to determine the majorant is reduced to normal forn
if £ is selected sufficiently large and the existence of the solutic' of the system follows from the Cauchy—
Kovalevskii theorem. The appropriate calculations are analogous to those performed in [8]. By construction,
the functions found satisfy the conditions (3.4) and (3.5) with k replaced by kg, A formula of the ferm (3.7) can
be obtained for them because of the equations. The fact that the constructed analytic functions majorize the
formal power series of the solution of the problem results from these formulas, the properties (3.12), and the
property of majorizability of the remaining equations of the system. Convergence is proved for a = 0, A # 0,

Let A=0, Then instead of (3.9), we demand compliance with the relationships

= lalK(1 — lak))" Ly, 1 = K(1 — |ah))" L,
Ry = (|H| + lalkK(1 — lah})~) Ly, (3.13)
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If A=0, a =0, in place of (3.9), we staisfy the relationships
R, = |H|Ly, + klp, oy = |Bjl,, -+ KL,,.
The subsequent considerations are analogous to those in the preceding case.
The possibility of inverting the mapping t=7 +a, x=x (7, @, 8, v) for small t is proved exactly as in [8].

The assertion of Theorem 1 is proved in the case (1.5).

4, Configuration A

The initial data (1.1) on Ty satisfy the inequalities (1.4), As in the preceding case, the first step is to
construct analytic functions taking on the data (1.1), in D, and D,. From the relationships of the strong dis-
continuity and the relationships of a central wave [6] the limit values of the gas parameters can be determined
on I'y from the domain Q, behind the shock, and the domain Q, in a central wave, The condition of contact with
the known solution anddata on I'y is sufficient for construction of the central wave. The problem reduces to
seeking the shock surface I'y, the contact discontinuity surface I'; and the solution in the domains €4, Q, which
satisfies the conditions (1.2) on I', (1.3) on I'y, and the conditions of continuous contact with the given solution
on the known characteristics I'y. The intermediate configurations, corresponding to configuration A, reduce
to the same problem.

The same transformations are satisfied in the domain Q,. New variables dre introduced in the domain
2, as-follows: The known surface I', is given parametrically by the equations t=«, x=x, (@, 8, v), where the
function x, (@, B8, v) is the solution of the problem

Xio = (Up — O)Xyp X Xpp)- <13 X Xy~ Xilo=o = %o (B, ¥).
Furthermore, the Cauchy problem
Te =1, X¢ = U, (Xp X Xy)- [Xgx Xy,
Xh—o =%, B, ¥), Th=o=a

is solved. The relationships T=7 +a, X=X(7, o, 8, Y) yield the passage to 7, @, 8, ¥. The Riemann invari-
ants R and L are introduced exactly as in Sec. 3. The transformed gasdynamics equations formally have the
form (3.2) (with small letters replaced by capitals in the notation) with the sole difference that M=1. Given
on the boundary 7 =0 are L, Ug, S as functions of the variables X, T. Therefore, the problem under considera=-

tion is analogous to the one studied in Sec, 3 in the case A=0, M=1, In particular, the condition of formal
solvability

A4+mp(l —m) ™ —ah==0,n=1,2,...
is satisfied. Further discussion is analogous to Sec. 3.

Proof of the possibility of inverting the mapping t=7 +a, X=%(T, o, 8, v) in the domains Q; and @, is
presented in {7, 8]. The theorem is proved.

The method elucidated for the construction of the solution can be used for an approximate computation
of the three-dimensional decay of a discontinuity in the neighborhood of the initial surface of discontinuity.

The author is grateful to L. V. Ovsyannikov for useful discussion,
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DETONATION-GENERATED SHOCK WAVE

N. N. Kalitkin and V, M. Sinenko UDC 533.932

Let us consider a cylindrical explosive charge of sufficiently large dimensions in which aplane detona-
tion wave traveling along the axis is initiated, When this wave emerges at the charge endface, decay of the
discontinuity occurs. Let a condensed explosive charge be in contact with an inert medium of lower dynamic
stiffness (gas, water, organic material). Then a shock will appear in the inert medium, and inversely in the
explosion products (EP), an unloading wave with two weak discontinuities.

There are some experiments of similar type in which the detonation and shock wave parameters have
been measured. Processing the experiments using explosions of a trotyl-hexogene (TH) [1] and a trotyl-oct~
ogene-inert (TOI) mixture [2], clarified an interesting regularity.

Plotted along the axes in Fig. 1 are logarithms of the shock wave pressure pgy, and the initial density of
the inert medium Py, in which this wave emerged (the letters denote the composition of the inert medium, ip~
cluding A for air, Ps for polystyrene, Pl for Plexiglas, Br for brass, and the numbers 1-3 are numbers of the
corresponding equations, All the experimental points for an explosive of definite composition and initial den-
sity p, lie on a line independently of the composition of the inert medium if an unloading wave returns back-
ward in the EP.
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